
Abstract- An incremental learning algorithm, Learn++, which 
allows supervised classification algorithms to learn from new 
data without forgetting previously acquired knowledge, is 
introduced. Learn++ is based on generating multiple classifiers 
using strategically chosen distributions of the training data and 
combining these classifiers through weighted majority voting. 
Learn++ shares various notions with psycho-physiological 
models of learning. The Learn++ algorithm, simulation results, 
and how the algorithm is related to various concepts in psycho-
physiological learning models are discussed. 
Keywords - Incremental learning, ensemble of classifiers, short 
and long term memory, psycho-physiological models of learning. 

 

I. INTRODUCTION 
 

Various paradigms have been developed over the last few 
decades to emulate learning and decision-making capabilities 
of the brain. In particular, artificial neural networks (ANNs) 
have been developed based on neurophysiological models, 
with one-to-one association between learning and training, 
neurons and nodes, synaptic connections and weights, etc.  

One of the shortcomings of many popular neural network 
architectures, however, is their inability to learn additional 
information incrementally from new data that become 
available after the original training session. Multilayer 
perceptron (MLP), radial basis function neural networks, 
wavelet networks, probabilistic neural networks, Kohonen 
networks and most self-organizing maps are all examples of 
popular ANN paradigms that are not capable of incremental 
learning. When additional data become available, these 
networks are typically discarded and retrained with combined 
data, which consists of both the original and the new data. All 
previously acquired knowledge is therefore lost, a 
phenomenon commonly known as catastrophic forgetting. 
Furthermore, if the original data is no longer available at the 
time new data become available, or when new data includes 
instances from new classes not present in the original data, 
these algorithms become completely useless for learning new 
information. 

The brain, however, does not suffer from catastrophic 
forgetting, and is capable of learning new information 
without forgetting previously acquired knowledge, even in 
the absence of the source of the original information. For 
example, a student learning new vocabulary does not 
necessarily forget previously learned vocabulary, nor does 
s/he need to re-study all vocabulary previously mastered to 
learn new vocabulary. 

Learn++, first introduced in [1], is an algorithm that 
allows any supervised classification algorithm to learn 
incrementally from new data in the absence of original (or all 
previous) data. Furthermore, Learn++ can also learn 
additional classes that may be introduced with the new data. 
This paper describes this algorithm and points out the 
similarities between the algorithm and various concepts in 
psycho-physiological models of learning. 

II. LEARN++ FOR INCREMENTAL LEARNING 
 

Learn++ is based on generating an ensemble of classifiers 
using different distributions of a training dataset. The training 
dataset is updated as new training databases become 
available. The final classification is then made by a weighted 
majority voting of classifier outputs. Combining classifiers 
using such a voting scheme has been used effectively in 
improving classifier performance. In particular, Schapire [2] 
has demonstrated that a strong classification algorithm can be 
generated from an ensemble of weak classification algorithms 
through a procedure called boosting. Using boosting, he 
showed that when weak classifiers are combined using a 
weighted majority voting, their combined performance is 
better than the best classifier in the ensemble, and comparable 
to (or better than) the performance of a strong classifier. 
Furthermore, this approach typically results in faster training 
than conventional strong classifiers, and more importantly, it 
does not suffer from overtraining. Learn++ is inspired by 
AdaBoost [3], which itself is based on boosting and was 
originally developed for improving classification 
performance of a weak classifier. Learn++, however, differs 
from AdaBoost in the sense that it is designed to add 
incremental learning capability to an existing classifier. 
Learn++ is described in Fig. 1. 

Inputs to Learn++ are the training data Sk of m samples 
randomly selected from the currently available database Dk, a 
weak learning algorithm WeakLearn, and an integer Tk, 
specifying the number of classifiers to be generated. Neural 
networks are especially suited for this setup, since they 
qualify as weak learners, where their weakness can be 
controlled by the number of layers/nodes and/or error goal. 
Learn++ requires that each weak learner be able to correctly 
classify at least 50% of the current training set, generating 
only a rough estimate of the actual decision boundary. 
Therefore, each weak learner can be trained very quickly, 
whereas strong learners typically spend a majority of their 
training time in fine-tuning the decision boundary.  

Each classifier can be thought of as a hypothesis h from 
the input space X to the output space Y. Learn++ asks 
WeakLearn to generate multiple hypotheses using different 
subsets of the training data Sk, and each hypothesis learns 
only a portion of the input space. This is achieved by 
iteratively updating a distribution Dt, t=1,2,…, Tk from which 
training subsets are chosen. The distribution itself is obtained 
by normalizing a set of weights assigned to each instance 
based on the classification performance of the classifiers on 
that instance (step 1). In general, instances that are difficult to 
classify are given higher weights to increase their chance of 
being selected into the next training dataset. The weights for 
the first iteration w1(i) (and, hence, the first distribution D1) 
are initialized to 1/m, i=1,2,…,m giving equal likelihood for 
each instance to be selected into the first training subset.  
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Input: For each dataset drawn from Dk k=1,2,…,K   

• Sequence of m examples S=[(x1,y1),(x2, y2),…,(xm,ym)]. 

• Weak learning algorithm WeakLearn. 

• Integer Tk, specifying the number of iterations. 

Do for each k=1,2,…,K: 
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Figure 1. Algorithm LEARN++ 

At each iteration t=1,2,…,Tk, Learn++ first dichotomizes 
Sk into a training subset TRt and a test subset TEt according to 
Dt (step 2), and calls WeakLearn to generate the hypothesis             
ht : X � Y (step 3). The error of ht on Sk = TRt + TEt is 
computed as (step 4) 
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If εt  > ½, ht is discarded and a new TRt and TEt are selected. 
Otherwise, the normalized error βt is computed as 

  ttt εεβ −= 1    (2) 
All hypotheses that are generated in the previous t 

iterations are then combined using weighted majority voting 
(step 5). The voting weights are based on the normalized 

errors β: hypotheses with lower normalized errors are given 
larger weights. A classification decision is then made based 
on the outputs of individual hypotheses, which constitutes the 
composite hypothesis Ht 
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Note that Ht decides on the class that is selected by the 
(weighted) majority of all t hypotheses. The error made by Ht 
is then computed as  
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where [ ]|| ⋅  is 1 if the predicate holds true, and 0 otherwise. If 
Et > ½, current ht is discarded, a new training subset is 
selected and a new ht is generated. This, however, is unlikely 
to happen, since all ht have already been verified in step 4 to 
correctly classify at least 50% of the instances. It can only 
happen when a new database Dk+1 is introduced. If Et < ½ , 
then the composite normalized error is computed as  

ttt EEB −= 1  (5) 
The weights wt(i) are then updated, which are used in 

computing the next distribution Dt+1, which in turn is used in 
selecting the next training and testing subsets, TRt+1 and 
TEt+1, respectively. The distribution update rule constitutes 
the heart of the algorithm, as it allows Learn++ to learn 
incrementally:  
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According to this rule, if instance xi i=1,2,…,m, is 
correctly classified by the composite hypothesis Ht, its weight 
is multiplied by a factor of Bt, which, by definition, is less 
than 1. If xi is misclassified, its distribution weight is kept 
unchanged. This rule reduces the likelihood of correctly 
classified instances being chosen into TRt+1, and instead 
increases the likelihood of misclassified instances to be 
selected into TRt+1. If we interpret instances that are 
repeatedly misclassified as difficult-to-learn examples (hard 
instances), and those that are correctly classified as easy-to-
learn examples (simple instances), the algorithm focuses 
more and more on hard instances, and forces additional 
classifiers to be trained with them. 

After Tk hypotheses are generated for each database Dk, 
the final hypothesis (final classification rule) is obtained by 
the weighted majority voting of all hypotheses. The voting 
mechanism effectively fine-tunes the decision boundary from 
the rough estimates provided by each hypothesis. 

The algorithm learns new information by generating 
additional classifiers, and at the same time, it retains the 
knowledge acquired earlier. Note that the weight update rule 
allows an efficient means of achieving incremental learning 
by concentrating predominantly on difficult to classify 
instances. This is particularly true when new classes are 
introduced by the new database, because all classifiers 
generated in the previous iterations will misclassify the 
instances from the new class. These instances will therefore 
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be misclassified by the composite hypothesis, and they will 
be forced into the next training dataset. A portion of correctly 
classified instances is also included in the next training 
dataset to ensure some balance between classes. Also note 
that the procedure would not work nearly as efficiently, if the 
weight update rule were based on the classification 
performance of ht only (as AdaBoost updates its distribution) 
instead of the composite hypothesis Ht. 

 

III. RESULTS 
 

The algorithm was tested on a variety of real world and 
synthetic datasets. Due to space limitations, only two sets of 
results are presented in this paper, and interested readers are 
referred to [4] for additional information. 

A. Optical Handwritten Digit Recognition (OHDR) 
This database consisted of 5620 instances of digitized 

hand written characters, from which 1200 instances were 
randomly selected for training. The database was obtained 
from the machine learning repository of University of 
California, Irvine, available at the web site [5]. The characters 
were numbers, 0 through 9, digitized on an 8x8 grid, creating 
64 attributes. This dataset was used to evaluate Learn++ on 
incremental learning without introducing new classes. 
Training data were divided into six subsets, S1 ~ S6, each with 
200 instances containing all 10 classes to be used in six 
training sessions. In each training session TSk, only one of 
these datasets was used. For each training session k=1,2,…,6, 
thirty hypotheses were generated by Learn++, using a single-
hidden-layer MLP with 30 hidden layer nodes and 10 outputs 
with an error goal of 0.1. Each hypothesis ht (t=1,2,…,30) of 
the kth training session was generated using a training subset 
TRt  and a testing subset TEt, each with 100 instances drawn 
from Sk.. Remaining instances constituted the validation 
dataset, TEST¸ and they were used to evaluate algorithm 
performance. Table 1 presents the results. 

Table 1. Performance of Learn++ on OHDR database 

Set ht 
(%) 

TS1 
(%) 

TS2 
(%) 

TS3 
(%) 

TS4 
(%) 

TS5 
(%) 

TS6 
(%) 

S1 55 94 94 94 93 93 93 
S2 53 --- 94 94 94 94 93 
S3 51 --- --- 95 94 94 94 
S4 53 --- --- --- 94 94 94 
S5 56 --- --- --- --- 95 95 
S6 58 --- --- --- --- --- 95 

TEST 41.3 82 84.7 89.7 91.7 92.2 92.7 
 
The ht column indicates the average performance of 

individual hypotheses on each training dataset. Weak learners 
provide little over 50% performances, which improve to well 
over 90% when the hypotheses are combined. Each column 
thereafter indicates the performance of Learn++ on the 
current Sk. The last row shows the classification performance 
on the validation dataset, which improved progressively as 
new data became available, indicating the incremental 
learning of new information.  

B. Gas Sensing  
This small, but extremely challenging database, was 

obtained from responses of six quartz crystal microbalances 
(QCMs) to various concentrations of five volatile organic 

compounds (VOCs), including ethanol (ET), xylene (XL), 
octane (OC), toluene (TL), and trichloroethelene (TCE). 
When QCMs are exposed to VOCs, the molecular mass 
deposited on their crystal surface alters their resonant 
frequency, which can be measured using a frequency counter 
or a network analyzer. By using an array of QCMs, each 
coated with a different polymer sensitive to specific VOCs, 
the collective response of the array can be used as a signature 
pattern of the VOC. However, QCMs have very limited 
selectivity, making the identification a challenging task.  

The database consisted of 384 six-dimensional signals, 
half of which were used for training. This dataset was used to 
evaluate Learn++ when additional classes are introduced by 
new databases. The database was divided into three training 
databases S1 ~ S3 and one validation dataset, TEST. S1 had 
instances from ET, OC and TL, S2 had instances mainly from 
TCE (and a few from the previous three), and S3 had 
instances from XL (and a few from the previous four). Only 
one dataset was used during each training session TSk, 
k=1,2,3. Single-hidden-layer MLPs with 30 hidden layer 
nodes and error goals of 0.1 were used as weak learners. 
TEST set included instances from all classes. Table 2 presents 
the results. 
Table 2. Performance of LEARN++ on gas sensing database 

 

Set TS1 (%) TS2 (%) TS3 (%) 
S1 96.2 77.5 76.3 
S2 --- 87.5 82.5 
S3 --- --- 90.0 

TEST 60.78 70.1 88.2 
 

The classification performance on the validation dataset 
TEST improved as new data became available. Note that at 
the end of TS1, the test performance was only 61%. This is 
expected, since the classifiers were only trained with three of 
the five classes, whereas the TEST dataset included instances 
from all five classes. The classification performance 
improved steadily, as new classes became available to the 
classifiers. Further details on VOC recognition using QCMs 
can be found in [4].  More information on this database and 
sample signals are provided at the web site [6]. 

These results demonstrate that LEARN++ successfully 
converts a classifier (such as a MLP) into an incremental 
learning algorithm, which otherwise suffers greatly from 
catastrophic forgetting. 
 

IV. DISCUSSION: LEARN++ AND PSYCHO-PHYSIOLOGICAL 
MODELS OF LEARNING 

 

Various models of learning have been developed during 
the past century, and Learn++ shares a surprisingly large 
number of notions with these models. In particular, many 
concepts in learning models have one-to-one correspondences 
in the Learn++ algorithm. These correspondences are 
described in the following paragraphs. 

Learning is defined as the process by which knowledge is 
acquired, and it is intimately related to memory, the retention 
of acquired knowledge. For many years, neurophysiologists 
believed that learning and memory were exclusively handled 
by the cerebral cortex of the brain, however, it was later 
realized that different types of learning and memory are 
handled at different distinct regions of the brain [7]. Recall 
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that Learn++ generates different decision boundaries for 
different regions of the input space, which are learned by 
different classifiers. We can, therefore, interpret different 
classifiers generated by Learn++ as different areas of the 
brain where knowledge is stored. Furthermore, when a 
specific area of the brain is surgically removed, not all 
knowledge associated with that area is lost [8]. This indicates 
that even a specific knowledge is distributed, with some 
redundancy, to various regions of the brain. Learn++ also 
exhibits similar behavior: given adequate number of 
classifiers, removing one or more classifiers will not 
deteriorate the performance of Learn++ for any specific class. 
Note that, this is in contrast to conventional classifiers. For 
example, if one or few nodes of a trained MLP are removed, 
the network will fail to identify many instances. 

According to a commonly accepted model, acquiring and 
storing knowledge has two distinct stages. Any new 
information acquired by the brain is processed and stored in 
“short-term memory”, which has a very limited capacity. 
When similar information is repeatedly presented, this 
information is then processed and stored in “long-term 
memory”, which has a larger capacity. However, the ability to 
recall information from the long-term memory also 
diminishes, though rather gradually in time, as new 
information is presented to the long-term memory [8]. 
Learn++ has obvious corresponding entities to short and long 
term memory models: individual classifiers serve as short-
term memory, whereas the composite classifier obtained by 
the ensemble of individual classifiers constitute the long-term 
memory of the algorithm. As new information (e.g., new 
classes) is introduced to the algorithm, earlier classes will 
tend to be forgotten, unless instances from earlier classes are 
also periodically presented. In fact, the weight update rule of 
Learn++ tries to keep a delicate balance between new and old 
information (hard and simple instances), with the balance 
biased towards the new information, so that the new 
information can be efficiently learned while previously 
acquired knowledge is not lost. However, just like in the 
above mentioned model, if instances from a specific class are 
not shown to the algorithm for a large number of hypotheses, 
while instances from new class are presented, then some 
information related to earlier classes may be lost. 

Learn++ is also closely related to psychological models of 
learning, such as operant conditioning. According to this 
model, developed by psychologists Thorndike and Skinner, a 
behavior is learned and reinforced through reward and 
punishment [7, 8]. Learn++ employs a similar reward and 
punishment scheme: for each class and/or instance that is not 
sufficiently learned, Learn++ is forced to continue learning 
through retraining with the un-cooperating instances and 
classes, until they are learned. In the mean time, 
reinforcement is obtained for successfully learned instances 
and classes by occasionally reintroducing them. 

Three other important concepts in operant conditioning 
learning are generalization, discrimination and extinction, all 
of which have corresponding entities in Learn++. 
Generalization refers to performing similar behavior in 
similar but different conditions, whereas discrimination is 
distinguishing similar but sufficiently different situations. 
Learn++ shares these concepts with most other classification 

algorithms, as all classifiers are designed to be able 
generalize sufficiently similar but different instances and 
discriminate similar but sufficiently different instances. 
Extinction is removal of a previously learned behavior in the 
prolonged absence of situations that originally gave rise to 
that behavior. Physiologically, this corresponds to loss of 
information saved in the long-term memory in the absence of 
repeated learning.  

Finally, despite the conflicting views on whether new 
neurons are synthesized in time or we are born with all the 
neurons we will ever have, there is a consensus that long-
term memory requires the synthesis of new proteins and the 
growth of new synaptic connections [8]. This probably 
constitutes the most striking association and the strongest link 
between Learn++ and the neurophysiological models. Every 
new training session involves generating a new classifier and 
combining this classifier with the previous classifiers, which 
can be interpreted as forming new synaptic links. 

   

V. CONCLUSIONS 
 

A new algorithm, Learn++, is introduced which allows any 
supervised classifier to learn incrementally from new data 
without losing previously acquired knowledge, in the absence 
of original data. Learn++ is also capable of learning new 
classes with new data. Initials results obtained using various 
databases demonstrate the feasibility of the algorithm. An 
interesting property of Learn++ is that it has one-to-one 
correspondences to many of the concepts in various models 
of learning. Future work includes evaluating Learn++ on 
various other classifiers, and using the weighted majority 
voting to estimate the confidence of the algorithm in its own 
decision, as well as investigating further associations between 
the algorithm and psycho-physiological models of learning.  
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